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We present a method to calculate upper bounds on the photonic band gaps of two-component photonic
crystals. The method involves calculating both upper and lower bounds on the frequency bands for a given
structure, and then maximizing over all possible two-component structures. We apply this method to a number
of examples, including a one-dimensional photonic crystal �or “Bragg grating”� and two-dimensional photonic
crystals �in both the TM and TE polarizations� with both four and sixfold rotational symmetries. We compare
the bounds to band gaps of numerically optimized structures and find that the bounds are extremely tight. We
prove that the bounds are “sharp” in the limit of low dielectric contrast ratio between the two components. This
method and the bounds derived here have important implications in the search for optimal photonic band-gap
structures.
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I. INTRODUCTION

Photonic crystals are structures that have a dielectric con-
stant that is a periodic function of space. Ever since they
were proposed independently by John1 and Yablonovitch,2 an
enormous amount of research has gone into understanding
their physical properties and developing their technological
potential, from both experimental and theoretical perspec-
tives. Perhaps the most important physical feature that pho-
tonic crystals can possess is a complete photonic band gap:3

a range of frequencies for which no electromagnetic wave
may propagate through the structure in any direction. This
crucial characteristic allows the waves to be manipulated in a
highly controlled way. To wit, one key application of pho-
tonic band-gap-possessing materials is near-lossless wave-
guiding, even around sharp bends.4 Furthermore, these ma-
terials may be used to inhibit spontaneous emission,2 provide
waveguides for laser surgery,5 and may in the future be the
basis of all-optical chip integration.6

A large number of structures with complete photonic band
gaps have been put forward, and many have been con-
structed. The first such three-dimensional example was a dia-
mond structure of dielectric spheres;7 many structures that
have been proposed since are variants on this one. The in-
verse opal structure has a relatively small gap, but at fre-
quencies that are sufficiently high that small manufacturing
defects may suppress it. There are a plethora of others, in-
cluding “Yablonovite,” a structure that can be manufactured
by drilling into a dielectric material in prescribed directions8

and the “Woodpile” structure, manufactured by layering rect-
angular columns of dielectric material.9 These are all mate-
rials composed of two dielectric components. The largest
known band gap of any two-component structure in three
dimensions is roughly 30%, relative to the center frequency,
when the ratio between the two dielectric components �di-
electric contrast� is 13, for a diamond lattice structure with

nearest neighbors connected by cylindrical rods.10 Since
many applications require large photonic band gaps, the
search for such structures has been extensive, and is ongoing.

There have been a number of systematic attempts to find
two-component structures that yield maximal band gaps. In
one of the first such studies, Maldovan et al.11 proposed di-
electric structures for each of the 11 face-centered cubic �fcc�
space groups, and calculated their band gaps. The choice of
the fcc space groups was well motivated, since the space

group of the diamond lattice �space group Fd3̄m, in interna-
tional notation� is among these; however, their structures
were not subjected to structural optimization of the band gap.
A number of recent studies have applied different structural
optimization techniques to find structures that maximize the
photonic band gap in two dimensions for photonic
crystals12,13 and quasicrystals.14 Different numerical tech-
niques were used in these studies to evolve an initial guess of
the structure it reaches a structure with the largest possible
band gap. Thus far, these types of optimizations have been
limited to two-dimensional systems due to the great compu-
tational cost of carrying out such a procedure in three
dimensions.15

In this paper, we propose a method for finding upper
bounds on the photonic band gap of two-component pho-
tonic crystals with dielectric constants �1 and �2 as a function
of the dielectric contrast ratio, �2 /�1. In order to demonstrate
how this method is used, we apply it to derive upper bounds
on band gaps in one-dimensional systems and two-dimen-
sional systems with hexagonal symmetry and with square
symmetry �in both the transverse-magnetic �TM� and
transverse-electric �TE� polarizations�. In these examples, the
bounds are on the gap between the first and second fre-
quency bands, but the method can be generalized to obtain
bounds on gaps between higher bands. We will report upper
bounds for three-dimensional structures in a companion
paper.16 Given the extensive work on finding large-band-gap
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structures, obtaining upper bounds is a highly germane con-
tribution in that it sets the absolute limit on the possible band
gap that may be obtained for any dielectric contrast. Impor-
tantly, if such an upper bound is realized, then it must be an
optimal structure.

In order to obtain a bound on the band gap, we need both
upper bounds and lower bounds on the frequency bands,
which are the allowed frequencies of propagation at any
Bloch wave vector, k. The photonic band structure is found
by solving an infinite-dimensional eigenvalue problem at any
k, and so to obtain upper bounds on the bands, we use a
Rayleigh-Ritz procedure.17 Lower bounds are obtained by
the use of the method of intermediate problems.18 The com-
bination of upper and lower bounds yields a bound on the
band gap for a particular dielectric structure. We place a
bound on the band gap over all structures by maximizing the
aforementioned bound over all possible two-component di-
electric structures. By comparing the upper bounds we derive
with the band gaps of known large-band-gap structures, we
show that the bounds are extremely tight at low dielectric
contrast. As the dielectric contrast increases, the bounds di-
verge slightly from the band gaps of the known maximum-
band-gap structures, but still remain tight for the highest con-
trasts commonly used in fabrication of photonic crystals
�roughly 10–13 for semiconductors such as GaAs or Si in
air�. We show in an Appendix that in the limit in which the
dielectric contrast goes to 1, the lower bounds and upper
bounds converge at any given k.

The outline of this paper is as follows. We introduce the
problem of calculating photonic band structure in Sec. II, and
describe the methods used to calculate upper and lower
bounds for the frequency bands in Secs. III A and III B, re-
spectively. In Sec. III C, we discuss how these bounds on the
frequency bands are combined to give overall bounds on the
band gap for any structure at any fixed dielectric contrast. In
Sec. IV we introduce realizability conditions for the Fourier
components of indicator functions that serve to tighten the
band-gap upper bounds. In Secs. V and VI, we apply our
results to find the first band-gap upper bounds in one dimen-
sion and two dimensions �in the transverse-electric and
transverse-magnetic polarizations�, respectively. We close
with concluding remarks in Sec. VII.

II. BASIC THEORETICAL BACKGROUND

The time-harmonic Maxwell’s equations in a periodic,
lossless, nonmagnetic medium with two components of di-
electric constants �1 and �2 may be reduced to a wave equa-
tion on R3 in terms of the magnetic field, H

� � � 1

��x�
� � H�x�� = ��

c
�2

H�x� , �1�

where ��x� is a periodic function that gives the dielectric
constant as a function of position, x, � is the oscillation
frequency of the wave, and c is the speed of light. The unit
cell of this periodic structure is defined by primitive lattice
vectors ai, i=1,2 ,3. The magnetic field must also be diver-
gence free

� · H�x� = 0. �2�

The dielectric function may be written as

��x� = �1I1�x� + �2I2�x� , �3�

where Ii�x�, called the indicator function for phase i, is 1
when x lies within phase i and is 0 otherwise.19 The volume
fraction for phase i is given by

�i 	
1

Vcell



cell

Ii�x�dx , �4�

where Vcell is the volume of the periodic unit cell and the
integral is carried out over that cell. Without loss of general-
ity, we assume that �2��1. The wave equation may also be
written in terms of the electric field in the medium, E

� � � � E�x� = ��x���

c
�2

E�x� , �5�

where E must satisfy the no-free-charge constraint

� · ���x�E�x�� = 0. �6�

According to Bloch’s theorem, a complete set of solutions to
both Eqs. �1� and �5� may be written as periodic vector fields
modulated by a plane wave of wave vector k, for all k within
the first Brillouin zone of the lattice. We refer to k as the
Bloch wave vector. We may thus write the fields as

H�x� = exp�ik · x�Hk�x�, E�x� = exp�ik · x�Ek�x� , �7�

where Hk and Ek are periodic vector fields with the same
periodicity as ��x�. Inserting Eq. �7� into Eqs. �1� and �5�
gives

�ik + �� � � 1

��x�
�ik + �� � Hk�x��

	 �k�x�Hk�x� = ��

c
�2

Hk�x� , �8�

and

�ik + �� � ��ik + �� � Ek�x��

	 �k�x�Ek�x� = ��x���

c
�2

Ek�x� , �9�

where the linear operators �k and �k, defined by Eqs. �8�
and �9�, are Hermitian and positive definite for k�0, and
positive semidefinite for k=0. Equations �8� and �9� are lin-
ear eigenvalue problems �the latter being a generalized ei-
genvalue problem due to the nontrivial operator multiplying
the field Ek on the right-hand side� over the space of periodic
fields, which we label P. The divergence-free constraint for
the magnetic field restricts the space over which Eq. �8� is
solved to a subspace of P; since this subspace is k depen-
dent, we call it Pk

H. Similarly, the electric field must satisfy
the no-free-charge constraint, and we call the subspace of P
that has this property Pk

E. The operator � is positive definite.
We may explicitly write a plane-wave basis for the space Pk

H

as �k	��k ,G , êk+G,	
 ,G�G ,	=1,2�, where �k ,G , êk+G,	

represents a wave function given in the position representa-
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tion by êk+G,	 exp�iG ·x� and G is the set of reciprocal lattice
vectors of the lattice defined by the ai’s. Here, for every G,
the vectors êk+G,1, êk+G,2, and k+G are constrained to form
an orthogonal triad in order to satisfy the divergence-free
constraint, Eq. �2�.

The eigenvalues of the operator �k are given by
��i�k� /c�2, for i=1, . . . ,
, where �i�k� is the ith frequency
�listed in ascending order� at Bloch wave vector k for the
dielectric configuration given by the function �. The frequen-
cies �i�k� as a function of k are called the band structure.
The band structure for a diamond lattice of high-dielectric
spheres is shown in Fig. 1. In a band structure diagram such
as this one, the ith eigenvalue corresponds to the ith band. As
indicated in the figure, the range of frequencies for which
there is no corresponding k is called the photonic band gap;
in order to have a complete band gap, it must persist for all k
in the first Brillouin zone. A common definition of the band
gap for the ith band, and that which will be used in this
paper, is

�i��� 	
�i+1

�min� − �i
�max�

��i+1
�min� + �i

�max��/2
, �10�

where �i is a functional of � since it depends on the dielec-
tric configuration, and �i

�min�=mink�1BZ �i�k� �analogously
for the maxima� and 1BZ denotes the first Brillouin zone.

The central goal of this paper is to obtain upper bounds on
the band gap, �i, regardless of the dielectric configuration of
the unit-cell �or perhaps given the constraint that it satisfies
certain symmetry properties�. To this end, we must obtain
upper and lower bounds on the frequency bands themselves
and then perform a maximization over all possible � to en-
sure that we obtain an upper bound on the band gap over all
dielectric configurations. We discuss this procedure in the
subsequent section.

III. RIGOROUS BOUNDS

A. Upper bounds on the frequency bands

In order to find upper bounds on the frequencies �i�k� at
a particular Bloch wave vector k, we employ the Rayleigh-
Ritz method17 as applied to the eigenvalue problems defined
by Eqs. �8� and �9�. The procedure to find upper bounds
using the magnetic field wave equation �8� is different than
that for the electric field wave equation �9�, and we start by
examining the former. We choose a set of n orthonormal
wave functions, �n= ���i
 , i=1, . . . ,n , ��i
�Pk

H�, which we
refer to as “trial functions.” We then diagonalize the operator
�k restricted to the subspace spanned by these vectors; this
is simply a matter of diagonalizing the matrix with elements
Uij

H	��i��k�� j
, i,j=1, . . . ,n. This matrix is necessarily Her-
mitian and positive semidefinite since �k has these proper-
ties, and thus its eigenvalues, defined as �ui

H�k� /c�2, are real
and non-negative. The Rayleigh-Ritz procedure tells us that
these eigenvalues, when placed in ascending order, are upper
bounds on the first n eigenvalues of the full eigenvalue prob-
lem: �i�k�
ui

H�k�, i=1, . . . ,n. In the present case, it is natu-
ral to choose plane waves as the orthonormal trial wave func-
tions ��i
 , i=1, . . . ,n, so that �n��k. The matrix elements
of UH in the plane-wave basis are:

U�G�,	���G	�
H = �k,G�, êk+G,	���k�k,G, êk+G,	


= ��k + G�� � êk+G�,	�� · ��k + G� � êk+G,	�

�
1

Vcell



cell

dx
1

��x�
exp�i�G − G�� · x� . �11�

The procedure to find upper bounds on �i�k� via the elec-
tric field wave equation is nearly identical to that for the
magnetic field, except that due to the nontrivial operator � on
the right-hand side of Eq. �9�, a different basis set must be
chosen. We must choose a set of n vectors, ���i
 , i
=1, . . . ,n , ��i
�Pk

E� �also called trial wave functions� with
the property that ��i���� j
=�ij for i,j=1, . . . ,n. If certain
vectors have this property, we say that they are orthonormal
with respect to the function �. Apart from this special choice
of basis vectors, the procedure is similar to that of the mag-
netic field case, except that here we diagonalize the matrix
Uij

E with elements Uij
E 	��i��k�� j
, i,j=1, . . . ,n. Thus, new

upper bounds �ui
E�k�� are obtained, so that �i�k�
ui

E�k�, i
=1, . . . ,n.

The bounds obtained using the magnetic and electric field
wave equations are different in general. This works to our
advantage in placing tighter upper bounds on the band gap
because for any given �, we may take the lower of the two as
an upper bound. Namely, we take

ui�k� = min�ui
H�k�,ui

E�k�� . �12�

B. Lower bounds on the frequency bands

Lower bounds on the bands may be found via the method
of intermediate problems of the second type,18 which was
first applied to photonic systems by Vatsya and Nikumb.21 In
that work, bounds were calculated for particular dielectric

FIG. 1. �Color online� Band structure of a diamond lattice of
high dielectric spheres �with the spheres in contact�, at dielectric
contrast �2 /�1=11.56, at volume fraction �2=50%, as calculated in
the MPB program �Ref. 20�. In a band-structure diagram such as this
one, the frequency for each band is plotted against wave vector in
the first Brillouin zone. The shaded region is a complete photonic
band gap, a range of frequencies for which there is no correspond-
ing Bloch wave vector. The band gap is between the second and
third frequency bands. The points X, U, L, �, W, and K denote
special wave vectors of high symmetry in the Brillouin zone.
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configurations of a unit cell but were not used to place a
bound on the band gap over all possible configurations of the
cell.

The method is described as follows: consider the Hermit-
ian eigenvalue problem H�	
=	�	
 over an infinite-
dimensional vector space, V. Assume that H can be written
as the sum of two linear operators,

H = A + B , �13�

where A is diagonal in a known, orthonormal basis set �
= ���i
 , i=1, . . . . ,
�, and B is positive definite. Following
Ref. 18, we may define a new inner product as �	 ���
= �	�B��
, where �	
,��
�V. Since the operator B is posi-
tive definite, it is necessarily Hermitian, so an orthonormal
basis for the new inner product �· � ·� may be found. This
basis, which we label ��pi
�, has the property �pi � pj�=�ij by
definition.

For any �	
�V, we have from Bessel’s inequality that

�	�B�	
 = �	�	� � �
i=1

n

��	�pi��2 = �
i=1

n

��	�B�pi
�2, �14�

where we have chosen a finite set of n of the �pi
’s. It follows
that B��i=1

n B�pi
�pi�B in the operator sense, and thus,

H = A + B � A + �
i=1

n

B�pi
�pi�B 	 A + Bn 	 Hn,

�15�

where Bn and Hn are defined in Eq. �15� and we have that
Hn
H, ∀n�1. It is necessarily true that if the eigenvalues
of Hn and H are listed in ascending order, the ith eigen-
value of Hn is a lower bound on the ith eigenvalue of H.

The operator Hn can be expressed in the orthonormal
basis �, after some algebraic manipulation, as

Hn = A + �
i,j=1

n

�M−1�ij��i
�� j� , �16�

where a finite set of n orthonormal trial vectors, �n
= ���i
 , i=1, . . . ,n�, have been chosen, and M is an n�n ma-
trix with elements given by Mij = ��i�B−1�� j
.

For the magnetic field eigenvalue problem in Eq. �8�, we
separate the operator �k as follows:

�k

H
= �ik + �� � � 1

�0
�ik + ����

A

+ �ik + �� ��� 1

��x�
−

1

�0
��ik + ����

B

�17�

Here, we introduce �0 and require it to have the property that
�0��2��1. We choose a set of n plane waves as trial wave
functions so that in this case, �n��k. Note that the first
operator on the right-hand side of Eq. �17� is diagonal in the
plane-wave basis �k, and the second is necessarily positive
definite as long as k�0. Therefore, all of the assumptions

required for the application of the method of intermediate
problems are met by this separation of �k, as long as k�0.

In the plane-wave basis, the matrix elements of M may be
shown to be

M�G�,	���G	� =
1

�k + G��2�k + G�2
��k + G�� � êk+G�,	��

· ��k + G� � êk+G,	�
1

Vcell

�

cell

dx� 1

��x�
−

1

�0
�−1

exp�i�G − G�� · x� .

�18�

If we set H=�k with the choice of A and B given in Eq.
�17�, and work with n plane waves in the set �n, the eigen-
values of the operator Hn, listed in ascending order, are
simply �li�k� /c�2 where li�k� is the lower bound on the ith
frequency band. In order to find the eigenvalues of Hn, it is
necessary to diagonalize an n�n matrix. It is important to
note that Hn is an operator on the entire space Pk

H and thus
has an infinite number of eigenvalues; n of these will be in
the subspace spanned by �n and the rest will not. This fact
places a constraint on the choice of �0 if we are to find the
largest possible nontrivial lower bounds, li�k�, i
n. Indeed,
�0 must be chosen such that �li�k� /c�2 does not exceed the
lowest eigenvalue of Hn corresponding to an eigenvector
that is not in the space spanned by �n. The greatest lower
bound is obtained for the largest possible choice of �0 subject
to this constraint.

C. Upper bounds on the band gap

In Secs. III A and III B, we have discussed how upper and
lower bounds for the bands may be obtained at a given Bloch
wave vector k. Using these bounds, it is possible to bound
the band gap from above. Assume for the moment that for a
given set of Bloch wave vectors, K= �k j , j=1, . . . ,m�, m�1,
lower bounds �li�k�� and upper bounds �ui�k�� may be ob-
tained on all bands up to and including the nth, so that for
1
 i
n, li�k�
�i�k�
ui�k�.

It is clear that mink�K ui�k���i
�min� and maxk�K li�k�


�i
�max�. It follows that:

�i��� 


min
k�K

ui+1�k� − max
k�K

li�k�

�min
k�K

ui+1�k� + max
k�K

li�k��/2
	 �i��� . �19�

The quantity �i���, defined in Eq. �19�, necessarily bounds
the band gap from above. Note that �i��� implicitly depends
on the trial wave functions that are used at each k�K. As
more wave vectors in the first Brillouin zone are included in
K and the lower and upper bounds get closer to the true
frequencies, the value of the band-gap bound approaches that
of the band gap. The bound on the band gap for any dielec-
tric structure is
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�i = max
�

�i��� , �20�

subject to the constraint that ��x� may take on only two
different values within the unit cell, �1 and �2. This con-
straint leads to much lower upper bounds on the band gap
than would have been the case for any periodic function.

The maximization over dielectric structures described in
Eq. �20� generalizes the bounds on the band gap for a par-
ticular structure to a bound over all structures �or those sub-
ject to some symmetry condition�. The procedure used to
carry out the maximization while constraining � to have only
two values may be described as follows. Observe that both
the calculation of upper bounds �described in Sec. III A� and
lower bounds �described in Sec. III B� on the frequency
bands involve Fourier transforms of some function of �. In-
deed, for a given set of Bloch wave vectors, K, trial functions
for each k�K, and dielectric constants �1 and �2, �i��� may
be written as a function of a finite number of Fourier com-
ponents of the indicator functions I1 and I2. In fact, since the
indicator functions have the property that I1+I2=1, �i���
may be written in terms of the Fourier components of I2

only, which we label Ĩ2�G�, where G is a reciprocal lattice
vector, and

Ĩ2�G� =
1

Vcell



cell

dx exp�iG · x�I2�x� . �21�

Strong constraints may be placed on the Ĩ2�G�’s based on the
realizability of the function I2. These constraints depend on
the symmetry constraints imposed on �, and will be dis-
cussed individually for a number of different cases in follow-
ing sections. The maximization described in Eq. �20� is car-

ried out over all realizable values of the Ĩ2�G�’s that arise in
the calculation of the upper and lower bounds. In the follow-
ing section, we discuss realizability conditions for these Fou-
rier components.

IV. REALIZABILITY CONDITIONS DICTATED
BY THE INDICATOR FUNCTION

In this section, we derive strong realizability conditions

on the Fourier components Ĩ2�G� in any spatial dimension d,
given that they must give rise to indicator functions in real
space. The problem of finding realizability conditions has
been extensively studied in different contexts, notably for
two-point correlation functions in multicomponent random
systems.19,22,23 These conditions are necessary in order to
obtain the lowest possible upper bound for the band gap, as
discussed in the previous section. We derive below three
types of conditions that each serve to constrain the space of
allowed Fourier components. We call these the “rearrange-
ment” conditions, the Parseval conditions, and the Toeplitz
conditions.

A. Rearrangement conditions

We may rewrite these Fourier components, for a given
reciprocal lattice vector G as

Ĩ2�G� = �Ĩ2�G��exp�i�G� , �22�

where �G is the phase of the Fourier component at G. This
implies that

�Ĩ2�G�� =
1

Vcell



cell

dxI2�x�cos�G · x − �G� , �23�

where the integral here is carried out over the d-dimensional

real-space unit cell. If G=0, Ĩ2�G� is simply the volume
fraction of phase 2, �2, and thus we have that

0 
 Ĩ2�0� 
 1. �24�

For all other reciprocal lattice vectors �G�0�, we wish to

find the maximum possible value of �Ĩ2�G�� for a given
phase, �G, and for a fixed volume fraction, �2

�Ĩ2�G���max� 	 max
I2:�2=const

�Ĩ2�G�� . �25�

The quantity �Ĩ2�G���max�, implicitly a function of �2, is the
largest possible Fourier amplitude that may be found at G.
The calculation of this quantity thus places a realizability
condition on the Fourier component Ĩ2�G�. To find
�Ĩ2�G���max�, we utilize the rearrangement theorem for func-
tions.24 It states that for any positive, bounded function f ,

max
I2:�2=const

1

Vcell



cell

dxf�x�I2�x� =
1

Vcell



cell

dxf�x�I2
�max��x� ,

�26�

where

I2
�max��x� = �1, if f�x� � c ,

0, otherwise,
� �27�

and c is a constant that may be obtained from the constraint
on the volume fraction, namely,

�2 =
1

Vcell



cell

dxI2
�max��x� . �28�

This result holds for functions that may be negative as well.
To prove this, we choose an f0 which is less than f�x� for all
x in the cell. We may write

max
I2:�2=const

1

Vcell



cell

dxf�x�I2�x�

= max
I2:�2=const

� 1

Vcell



cell

dx�f�x� − f0�I2�x� + f0�2� .

�29�

Since �2 is held fixed in the optimization, and f�x�− f0�0
for all x, Eq. �26� holds true. A perfectly analogous result
holds for finding minima of expressions such as the one in
Eq. �26�, the only difference being that the “�” sign in Eq.
�27� is replaced with a “�” sign. Using this result with
f�x�=cos�G ·x−�G� gives us an explicit way to evaluate the
right-hand side of Eq. �25�. This places strict bounds on
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Ĩ2�G� as a function of �G and �2. This procedure is depicted
in Fig. 2, in a one-dimensional system with period a and
using the reciprocal lattice vector G=2� /a and phase �G
=0.

If we wish to enforce a certain point or space group sym-
metry on the structure, we may place even stronger realiz-
ability conditions on the Fourier components of the indicator
functions. This will be the case in Secs. VI A and VI B,
where we place bounds on the band gap of two-dimensional
photonic crystals with sixfold rotational symmetry �C6� and
fourfold rotational symmetry �C4�, respectively.

Assume that we wish our structure to have the symmetry
associated with some point group of symmetry operations,
S. We restrict ourselves to point group operations, as op-
posed to full space group operations. It follows that for any

reciprocal lattice vector G, we have that Ĩ2�G�= Ĩ2�SG�,
where S�S is a point group operation. We may use this to

place a constraint on the Fourier amplitudes �Ĩ2�G��: for
structures with S-point group symmetry enforced,

�Ĩ2�G���max� = max
I2:�2=const

1

Vcell

�

cell

dx� �
S�S

cos�SG − �G��I2�x� .

�30�

The result of this maximization may be evaluated using Eq.
�26�. If the point group S includes inversion, as do C4 and
C6, then �G=0 for all G. Figure 3 is a depiction of the inte-
gral that must be performed for Eq. �26� for the case of C6
rotational symmetry in two dimensions. In this case, f�x�
=�S�C6

cos�SG ·x−�G�. Here, we take G to be in the first
ring �a set of vectors with equal norm� of reciprocal lattice
vectors away from the origin. Figure 4 explicitly shows the

region of realizability for the Fourier amplitude �Ĩ2�G�� for
this case.

B. Parseval conditions

Further realizability conditions may be imposed on the
Fourier components by employing Parseval’s theorem. It
states that

1

Vcell



cell

dxI2
2�x� = �

G�G
�Ĩ2�G��2. �31�

Since I2=I, it follows that

�2�1 − �2� = �
G�G\�0�

�Ĩ2�G��2. �32�

The calculation of �i���, the bound on the band gap for a
particular dielectric structure, involves only a finite number

of Fourier components Ĩ2�G�, the number of which depends
on the number of trial functions used. If we only include a
finite number of reciprocal lattice vectors, in the set GS�G,
it follows from Eq. �32� that we have the inequality:

FIG. 2. �Color online� Depiction of how realizability conditions

are imposed on Ĩ2�G�, with G=2� /a and �G=0. In �a�, a general
indicator function I2�z� is plotted, where z� �−a /2,a /2�, the one-

dimensional real-space unit cell. The corresponding value of Ĩ2�G�
is equal to the shaded region �normalized by the period, a�. In �b�,
phase 2 is grouped into a contiguous region; this yields the maximal

�Ĩ2�G��. Note that we assume that Ĩ2�G� is real in �a�; in �b�, this is
true by inversion symmetry. In both �a� and �b� the volume fraction

of phase 2 is �2= Ĩ2�0�.

FIG. 3. �Color online� Schematic depiction of the integral in Eq.
�30� for a two-dimensional system with C6 symmetry imposed. The
curve f�x�=�S�C6

cos�SG ·x−�G� is plotted in a single hexagonal
unit cell. The reciprocal lattice vector at which the Fourier trans-
form is taken here is in the first ring of reciprocal lattice vectors
away from the origin. The function I2

max�x� takes on the value 1
when f�x��c and is 0 otherwise. The integral must be carried out
numerically for values of c within the range minx f�x��c
�maxx f�x�.

FIG. 4. �Color online� The shaded region is the space of realiz-

able ordered pairs ��2 , Ĩ2�G��, according to the rearrangement con-
ditions, for a system with sixfold rotational symmetry imposed.
Here, G is in the first ring of reciprocal lattice vectors away from

the origin. Note that Ĩ2�G� must be real, because of the imposed C6

symmetry, which contains inversion.
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�2�1 − �2� � �
G�GS\�0�

�Ĩ2�G��2. �33�

Relation �33� serves as an important realizability condition.

C. Toeplitz conditions

The indicator function I may be thought of as a linear
operator on the space of functions whose domain is the unit
cell. Choosing a set of n reciprocal lattice vectors,
�G1 , . . . ,Gn�=GS, and defining the matrix T�I2� by its ele-
ments

Tjk�I2� =
1

Vcell



cell

dxI2�x�exp i�Gk − G j� , �34�

we see that T is a Toeplitz matrix with dimension n. It is well
known25 that for a Toeplitz matrix T�f�, where f is a bounded
function that maps a unit cell to the real numbers, we must
have that for each j=1, . . . ,n,

min
x

f�x� 
 � j�f� 
 max
x

f�x� , �35�

where � j�f� is the jth eigenvalue of T�f�. Replacing f with I2
here gives us a new and quite strong realizability condition
for the Fourier components of the indicator function. Thus,
we have:

0 
 � j�I2� 
 1. �36�

These inequalities further constrain the space of realizable
Fourier components by placing restrictions on the eigenval-
ues of the operator T�I2�.

V. UPPER BOUNDS ON THE FIRST BAND GAP
IN ONE DIMENSION

In the case of a one-dimensional photonic crystal, we set
the dielectric constant to be a periodic function of only a
single spatial variable, z, so that ��x�→��z�. Thus, the con-
figuration may be thought of as a series of slabs arranged
periodically, with period a. The slabs are taken to be infinite
in extent in the x and y directions. We constrain the direction
of propagation to be only in the z direction, so that k
= �0,0 ,k�. This system is depicted in Fig. 5. Since there is a
symmetry associated with rotations around the z axis, we
only consider wave functions polarized along the x axis.

In this section, we discuss how the lower bounds �li�k��
and upper bounds, �ui�k�� for the frequency bands are ob-
tained. For the latter, both magnetic and electric field wave
equations are employed since they lead to different upper
bounds. We limit ourselves to bounding the band gap be-
tween the first and second bands in the spectrum, which
means we must obtain lower bounds on the first frequency
band and upper bounds on the second.

We choose a single Bloch wave vector given by k=� /a,
at the Brillouin zone boundary, at which to calculate the
lower and upper bounds. This is an obvious choice since it is
typically the point at which the first and second bands are at
their closest. The trial wave functions used for both the lower
and upper bound procedures are plane waves polarized in the

x direction with wave vectors of the form G= �0,0 ,G�. We
take 6 such trial wave functions with Ga=−6�, −4�, −2�,
0, 2�, and 4�. Note that these trial wave functions satisfy
both the divergence-free constraint �Eq. �2�� and the no-free-
charge constraint �Eq. �6��. Furthermore, they are orthonor-
mal in the usual inner product and with respect to the dielec-
tric constant function, which means that upper bounds may
be obtained from both the magnetic and electric field wave
equations. The lower bounds are obtained by diagonalizing
the matrix Hn, defined in Eq. �16�, within the space spanned
by the trial functions. The constant �0 is chosen such that the
lowest of these eigenvalues is equal to the lowest eigenvalue
of Hn that lies outside the space spanned by the trial wave
functions �which is 49�2 /a2 in this case�. Thus, for a given
dielectric structure a bound on the first band gap �1��� may
be obtained.

In order to obtain an overall bound on the band gap, we
must maximize �1��� over all structural parameters that enter
into this expression. With the choice of trial wave functions
described in the previous paragraph, six Fourier components

enter in, namely, Ĩ2�0�, Ĩ2�2� /a�, Ĩ2�4� /a�, Ĩ2�6� /a�,
Ĩ2�8� /a�, and Ĩ2�10� /a�. The first, Ĩ2�0�, is necessarily real
and without loss of generality. We may define the second,

Ĩ2�2� /a�, to be real as well, because the phase may be re-
moved by translation. The rest of these Fourier components
may have nonzero phases, and thus we are left with the prob-
lem of maximizing �1��� over a ten-dimensional parameter
space. This space is highly restricted by using the Rearrange-
ment, Parseval, and Toeplitz realizability conditions on the
Fourier components listed above. The optimization is per-
formed with a reliable interior-point optimization method,26

FIG. 5. �Color online� One-dimensional photonic crystal. Here,
phase 2 �the high dielectric-constant phase� is represented by the
translucent slabs and phase 1 is empty space. The structure is peri-
odic in the z direction with period a and extends infinitely in the x
and y directions. We limit our analysis to Bloch wave propagation
along the z direction, thus k= �0,0 ,k�.
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and thus the overall band-gap bound �1 is obtained for any
given dielectric contrast ratio, �2 /�1.

The bounds are plotted in Fig. 6 as a function of �2 /�1.
Also plotted for the sake of comparison is the largest known
one-dimensional band gap. This optimal structure is simply
one contiguous interval of dielectric constant �2 in a back-
ground of dielectric constant �1 within the unit cell. We refer
to this structure as the simple two-scale periodic geometry.
To the authors’ knowledge, there is no rigorous proof that
this is the structure that yields the largest band gap; this is an
indication of the difficulty of the problem. There is strong
reason to believe that this yields the largest first band gap,
however, since it leads to the most possible Bragg scattering
at the first nonzero reciprocal lattice vector. The maximal
band gap for each dielectric contrast ratio is obtained �using
the MPB program20� by maximizing the gap with respect to
the length of the interval. Note that the bounds approach the
optimal structure as �2 /�1→1. We prove in the Appendix
that this is true in a certain sense: at any Bloch wave vector,
the lower and upper bounds converge in this limit. While this
does not prove that the bounds are sharp �since there remains
the possibility that a sufficient number of Bloch wave vectors
have not been incorporated�, it is highly suggestive that they
are at least in the one-dimensional case.

VI. UPPER BOUNDS ON THE FIRST BAND GAP
IN TWO DIMENSIONS

In this section, we present the method for and results of
the calculation of upper bounds of the first band gap of the
hexagonal and square lattices. In the hexagonal case, sixfold
rotational symmetry �symmetry group C6� is enforced, and in
the square case, fourfold rotational symmetry �symmetry
group C4� is enforced. These constraints on the optimization
are well motivated, since when hexagonal and square unit
cells are used, numerical calculations have shown that the

maximum-band-gap structures �for many different band gaps
in the spectrum� have sixfold and fourfold rotational symme-
try, respectively. Figure 7 shows an example of a two-
dimensional hexagonal photonic crystal. This is a structure
whose dielectric constant is purely a function of two Carte-
sian coordinates, �x ,y�, and is independent of the third �z�,
thus, ��x�→��x ,y�. We thus consider Bloch wave vectors in
the plane, so that k= �kx ,ky ,0�→ �kx ,ky�. Also shown in Fig.
7 is the two-dimensional Brillouin zone of this structure,
with two Bloch wave vectors at high symmetry points la-
beled, namely kE and kV; both of these were used in the
calculation of the band-gap bounds. We derive band-gap
bounds for both the TM and TE cases, where the magnetic
field is polarized in the �x ,y� plane in the former and perpen-
dicular to the plane in the latter �vice versa for the electric
field�, respectively.

A. Band-gap bounds for the hexagonal lattice

Here, we calculate upper bounds for the first band gap of
the hexagonal lattice defined by the direct lattice vectors a1
=a�1,−1 /�3� and a2=a�0,2 /�3� �and with reciprocal
lattice vectors given by b1= �2� /a��1,0� and b2
= �2� /a��1 /2,�3 /2��. We obtain upper and lower bounds on
the frequency bands at the two Bloch wave vectors kE
= �� /a ,0� and kV= �� /a ,� /�3a�, as depicted in Fig. 7. As in
the one-dimensional case, we use plane-wave trial wave
functions. At kE, the center of a zone edge, we choose four
such plane waves, with wave vectors G= �0,0�, �−2� /a ,0�,
�� /a ,�3� /a�, and �−� /a ,−�3� /a�. At kV, a zone vertex,
we choose six plane-wave trial wave functions, with wave
vectors G= �0,0�, �−2� /a ,0�, �−� /a ,−�3� /a�, �−� /a ,
�3� /a�, �−3� /a ,−�3� /a�, and �� /a ,−�3� /a�.

To calculate upper bounds on the frequency bands, we use
the procedure described in Sec. III A and define the polariza-
tions of our plane-wave trial wave functions as follows. In
the TE case, they are polarized in the z direction and we use

FIG. 6. �Color online� Upper bounds on the one-dimensional
photonic band gap �black dashed line�, as a function of dielectric
contrast, as derived in Sec. V of this paper. The solid red line gives
the largest band gap obtained for any one-dimensional unit-cell con-
figuration. This is the simplest possible one-dimensional structure: a
single interval of phase 2 in a background of phase 1, referred to in
the text as the simple two-scale periodic geometry. Note that these
are bounds over all possible volume fractions of phase 2.

FIG. 7. �Color online� Part �a� is a schematic depiction of a
two-dimensional photonic crystal. The cylinders extend infinitely in
the z direction, propagation is confined to the x-y plane, and the
magnetic field may polarized in the x-y plane �TM case� or in the z
direction �TE case�. The structure shown is an example of one with
sixfold rotational symmetry, with one cylinder in each hexagonal
unit cell. Part �b� is a depiction of the two-dimensional first Bril-
louin zone. We find upper and lower bounds for the frequency
bands at both kE and kV in order to achieve a better bound on the
complete band gap.
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the magnetic field wave equation to obtain the upper bounds
�since in the TE polarization, the magnetic field is perpen-
dicular to the plane�. We cannot use the electric field wave
equation for the TE polarization because plane waves polar-
ized in plane do not satisfy the no-free-charge condition, Eq.
�6�, and thus may not be used as trial functions within the
space Pk

E, for any k. In the TM case, we may use both the
magnetic and electric field wave equations to obtain upper
bounds on the frequency bands. For the former, the trial
functions are polarized in plane, transverse to the direction of
propagation, k+G �and thus satisfy the transversality con-
straint�. For the latter, trial wave functions are polarized in
the z direction �these therefore satisfy the no-free-charge
constraint and are orthogonal with respect to the dielectric
function ��. Note that these two upper bounds may be used
together to find a lower upper bounds on the frequency
bands. To bound the first band gap, we use only the upper
bound on the second frequency band. To calculate lower
bounds on the frequency bands, we use the procedure de-
scribed in Sec. III B. The plane-wave trial wave functions are
polarized in plane for the TM case, and in the z direction for
the TE case.

As in the one-dimensional case, the expression for �1���
implicitly contains a number of the Fourier components of

the indicator function I2. They are Ĩ2��0,0��, Ĩ2��2� /a ,0��,
Ĩ2��0,2�3� /a��, and Ĩ2��4� /a ,0��. Each of the latter three
Fourier components are equal to five others by the C6 sym-
metry operations, each defining a ring of reciprocal lattice
vectors. Since the inversion operation is contained in C6,
these components must be real. We perform a numerical
maximization of �1��� with respect to these four parameters
subject to the realizability conditions defined in Sec. IV.

The bounds on the first TE and TM band gaps with the
hexagonal lattice configuration are presented in Fig. 8, plot-
ted as a function of the dielectric contrast ratio, namely
�2 /�1=11.56. For comparison, the largest known band gaps

for this system are plotted in the same figure. The TM and
TE maximized band gaps were taken from Refs. 13 and 14,
respectively, however, in the TE case the optimization was
only performed at a single value of the contrast ratio. Simi-
larly to the one-dimensional case, the maximized band gaps
converge to the bounds in the limit �2 /�1→1. In this limit
the bounds may be thought of as sharp in the sense that at
any Bloch wave vector k, the lower and upper bounds con-
verge to first order in �2 /�1−1, as shown in the Appendix.

B. Band-gap bounds for the square lattice

The calculation of the band-gap bounds for the square
lattice, with C4 symmetry enforced proceeds completely
analogously to the sixfold case, with the only change being
the choice of Bloch wave vectors and trial wave functions.
Figure 9 depicts a two-dimensional photonic crystal with
fourfold symmetry and a square unit cell. It also shows the
two-dimensional Brillouin zone with two points of high sym-
metry at kE and kV. As in the hexagonal case, we use both of
these points to bound the band gap. In the square case, with
direct lattice vectors a1=a�1,0� and a2=a�0,1�, and recipro-
cal lattice vectors b1= �2� /a��1,0� and b2= �2� /a��0,1�, we
have that kE= �� /a��1,0� and kV= �� /a��1,1�.

In the calculation of the upper and lower bounds on the
frequency bands at kE, we use two plane-wave trial wave
functions with wave vectors given by G= �0,0� and G
= �−2� /a ,0�. At kV, we use four plane-wave trial wave func-
tions at G= �0,0�, �−2� /a ,0�, �0,−2� /a� and G= �−2� /a ,
−2� /a�. The polarizations of these plane waves are chosen
in exact analogy with the sixfold case for both the TM and
TE polarizations. The bounds on the band gap for the four-
fold case are plotted in Fig. 10, as a function of �2 /�1. For
comparison, we have also plotted the maximum achieved
band gap for any structure in both polarizations �taken from
Ref. 14 for a range �2 /�1 and from Ref. 13 for �2 /�1
=11.56�.

FIG. 8. �Color online� Upper bounds on the first two-
dimensional TM photonic band gap �black dashed line�, and upper
bounds on the first two-dimensional TE photonic band gap �green
dotted line�, both with imposed sixfold rotational symmetry, plotted
as a function of dielectric contrast. The red solid line gives the
largest known TM band gaps as a function of dielectric contrast
�Ref. 14�. The blue circle denotes the largest realized first TE band
gap �52%�, at dielectric contrast 11.56 �from Ref. 13�. Note that
these are bounds over all possible volume fractions of phase 2.

FIG. 9. �Color online� Part �a� is a schematic depiction of a
two-dimensional photonic crystal with fourfold �C4� symmetry. The
cylinders extend infinitely in the z direction, propagation is confined
to the x-y plane, and the magnetic field may polarized in the x-y
plane �TM case� or in the z direction �TE case�. Part �b� is a depic-
tion of the two-dimensional square first Brillouin zone. We find
upper and lower bounds for the frequency bands at both kE and kV

in order to achieve a better bound on the complete band gap.
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VII. CONCLUSIONS

In this paper, we have proposed a general method to find
upper bounds on band gaps of two-component photonic crys-
tals. We applied the technique to a one-dimensional photonic
crystal, two-dimensional photonic crystals with sixfold rota-
tional symmetry, and those with fourfold rotational symme-
try. In all cases, we found bounds on the first band gap that
were extremely tight for low dielectric contrasts �as com-
pared with the maximal band gaps that may be achieved�,
and then diverged slowly as contrast increased. To summa-
rize the method itself, we used the Rayleigh-Ritz procedure
to calculate upper bounds on the frequency bands, the
method of intermediate problems to calculate lower bounds,
and used plane-wave trial wave functions for both of them.
Taken together, these gave a bound on the band gap, �1���,
for any given structure. To find the bound on the band gap
over all structures, we had to maximize �1��� over all pos-
sible two-component structures. We found that since plane-
wave trial functions were used, the only structural param-
eters that entered into the calculation of �1��� were a finite
number of Fourier coefficients of the indicator function for
one of the phases �chosen arbitrarily to be phase 2�. By maxi-
mizing over all realizable values of the corresponding Fou-
rier components �i.e., those values that are possible to give
rise to an indicator function in real space�, we obtained the
overall bound on the band gap, for any given dielectric con-
trast. In another paper,16 we will introduce band-gap bounds
in three dimensions.

The method used here does not lend itself to calculating
bounds on photonic band gaps in quasicrystalline or amor-
phous systems, since we require that the structure be periodic
and therefore that the Bloch theorem applies.

We have limited ourselves in this paper to the calculation
of bounds on the first photonic band gap, but the method is
straightforwardly generalized to calculate higher band gaps

in the spectrum. That said, the first band gap in one- and
two-dimensional systems is by far the most studied, both
experimentally and theoretically. Furthermore, as it has been
argued previously that higher band gaps are much less robust
against fabrication imperfections.27

There has been extensive work on finding upper and
lower bounds for the effective dielectric constant of multi-
component disordered systems.19 These bounds may be ex-
pressed in terms of n-point correlation functions of the dis-
ordered structure, where the bounds improve as more
correlation information is included. In the present work,
since bounds are first derived in terms of Fourier components
of indicator functions, their is no immediate parallel with
bounds derived in terms of correlation functions. To be more
specific, consider the two-point correlation function of a two-
component structure. It implicitly contains information about
the amplitudes of the Fourier components, but not their
phases. Since in the present work we incorporate phase in-
formation, these bounds cannot be expressed purely in terms
of the standard two-point correlation �autocorrelation func-
tion involving the indicator function�.

In future work, we will extend the present analysis to
obtain upper and lower bounds on the eigenvalues of the
Laplacian operator, which is a simpler problem. Such eigen-
values are of direct relevance to the determination of the
relaxation times associated with diffusion and reaction in
fluid-saturated porous media as well as nuclear magnetic re-
laxation in such media.19,28,29 However, the development of
bounds on the eigenvalues �inversely proportional to the re-
laxation times� has been very limited. For example, the
Rayleigh-Ritz formulation has only been used to get lower
bounds on the largest relaxation time �smallest positive
eigenvalue�.28 Upper bounds have not been obtained for the
largest relaxation time and no bounds exist for any of the
other eigenvalues. We intend to provide such bounds in the
future.
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APPENDIX: SHARPNESS OF BOUNDS IN THE
LOW-CONTRAST LIMIT

In this Appendix, we prove that in the limit of low dielec-
tric contrast, the lower bounds and upper bounds �derived
using plane-wave trial functions� on the bands at any given k
approach one another. Although this does not prove that the
largest-band-gap structure realizes the bounds in this limit, it
strongly suggests that if a sufficient number of k’s are used
in calculating the bound, the bound will be achieved by some
structure. It also accounts for why, in Figs. 6 and 8, the
maximum-band-gap structure approaches the bound in the
limit of low contrast.

In order to prove this, we will need the following identity:
given square matrix P with matrix elements of the form

FIG. 10. �Color online� Upper bounds on the first two-
dimensional TM photonic band gap �black dashed line�, and upper
bounds on the first two-dimensional TE photonic band gap �green
dotted line�, both with imposed fourfold rotational symmetry, plot-
ted as a function of dielectric contrast. The red solid line gives the
largest known TM band gaps as a function of dielectric contrast
�Ref. 14�. The blue circle denotes the largest realized first TE band
gap ��29%�, at dielectric contrast 11.56 �from Ref. 13�. Note that
these are bounds over all possible volume fractions of phase 2.
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Pij = �i�ij + �ij� + O��2� , �37�

where �ij is the Kronecker delta, � is a small expansion
parameter, and i,j� �1, . . . ,n�, then the matrix elements of
the inverse of this matrix are

Pij
−1 =

1

�i
�ij −

�ij

�i� j
� + O��2� . �38�

Now, to prove the equality of the upper and lower bounds
in the low contrast limit, it is sufficient to show that

U�G�	���G	�
H =

�k + G�2

�0
��G�	���G	� + M�G�	���G	�

−1 , �39�

where all of the quantities here are defined in Eqs. �11� and
�16�–�18�. Recall that the reciprocal lattice vector G and po-
larization index 	� �1,2� taken together index a single
plane-wave basis member.

We first re-express the left-hand side of Eq. �39� using Eq.
�11� as

U�G�	���G	�
H = ��k + G�� � êk+G�,	�� · ��k + G� � êk+G,	�

���1 + ��2 − �1�Ĩ2�G − G��� , �40�

where �i=1 /�i for i� �1,2 ,3�. We will show that in the limit
of low contrast, i.e., �2 /�1→1, the right-hand side of Eq.

�39� is equal to this to first order in the expansion parameter
��=�2−�1.

Consider the expression given in Eq. �18� for the matrix
element of M.

M�G�	���G	� =
��k + G�� � êk+G�,	�� · ��k + G� � êk+G,	�

�k + G��2�k + G�2

� ���1 − �0�−1 + ���2 − �0�−1

− ��1 − �0�−1�Ĩ2�G − G��� , �41�

but we may make the following expansion:

���2 − �0�−1 − ��1 − �0�−1� =
− ��

��1 − �0�2 + O���2� .

�42�

Thus, the matrix M is of the form of P, and we may use the
identity derived earlier in this Appendix to obtain the inverse
of M to first order in ��

M�G�	���G	�
−1 = �k + G�2��1 − �0���G�	���G	�

+ ��k + G�� � êk+G�,	�� · ��k + G� � êk+G,	�

���2 − �1�Ĩ2�G − G�� . �43�

Comparing this to Eq. �39� completes the proof.
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